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ABSTRACT ACM Reference Format:

The image-based virtual try-on system has attracted a lot of research
attention. The virtual try-on task is challenging since synthesizing
try-on images involves the estimation of 3D transformation from
2D images, which is an ill-posed problem. Therefore, most of the
previous virtual try-on systems cannot solve difficult cases, e.g.,
body occlusions, wrinkles of clothes, and details of the hair. More-
over, the existing systems require the users to upload the image
for the target pose, which is not user-friendly. In this paper, we
aim to resolve the above challenges by proposing a novel Fash-
ionOn network to synthesize user images fitting different clothes
in arbitrary poses to provide comprehensive information about
how suitable the clothes are. Specifically, given a user image, an
in-shop clothing image, and a target pose (can be arbitrarily manip-
ulated by joint points), FashionOn learns to synthesize the try-on
images by three important stages: pose-guided parsing translation,
segmentation region coloring, and salient region refinement. Exten-
sive experiments demonstrate that FashionOn maintains the details
of clothing information (e.g., logo, pleat, lace), as well as resolves
the body occlusion problem, and thus achieves the state-of-the-art
virtual try-on performance both qualitatively and quantitatively.

CCS CONCEPTS

« Computing methodologies — Neural networks; Computer
vision tasks; Image representations; Texturing; Image segmen-
tation; Shape inference.

KEYWORDS

Virtual try-on; image synthesis; pose transformation; semantic-
guided learning

*Authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MM 19, October 21-25, 2019, Nice, France

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6889-6/19/10...$15.00
https://doi.org/10.1145/3343031.3351075

275

Chia-Wei Hsieh, Chieh-Yun Chen, Chien-Lung Chou, Hong-Han Shuai,
Jiaying Liu, and Wen-Huang Cheng. 2019. FashionOn: Semantic-guided
Image-based Virtual Try-on with Detailed Human and Clothing Information.
In Proceedings of the 27th ACM International Conference on Multimedia (MM
’19), October 21-25, 2019, Nice, France. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3343031.3351075

Source Target In-shop Synthesized Coarse Refined
User Pose Clothes Parsing Try-On Try-On

: o T 9
| L)

Figure 1: An example of virtual try-on with arbitrary poses.

1 INTRODUCTION

“Style is something each of us already has, all we need to do is find it.”

— Diane von Furstenberg (1946-)
Everyone has their own style, but the process of finding it is chal-
lenging and time-consuming. For example, when users purchase
fashion items online, they can quickly explore as many items as
they want but may worry about the inconsistency of the looks
between them and models. As such, users are more conservative in
buying new fashion items online. On the other hand, users can try
on various fashion items in brick-and-mortar stores, which helps
them gain multi-aspect information of suitability, but it may require
a lot of time to get to the stores and try on fashion items.

Among many promising approaches [6, 16, 17] bridging the gap
between online and offline shopping, virtual try-on service is the
most concerning task. Therefore, a recent line of studies attempts
to realize the virtual try-on by utilizing clothing warping [15, 42],
which successfully preserves the details of garments including logos,
patterns, and decorative designs. However, when the occlusion (e.g.,
the users’ arms cross over the chest and occlude the clothing in
source images) or dramatic posture transformation (e.g., limbs from
non-overlapping to overlapping) happen, the quality of the results
decreases significantly. On the other hand, when users attempt to
find their try-on images from different view angles or postures,
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current approaches require users to upload their pictures with
corresponding view angles or poses. To provide a user-friendly
virtual try-on, a virtual try-on that can transform arbitrary poses
by a single image is desirable.

Based on these observations, we propose a novel virtual try-on
network, namely, FashionOn network, for synthesizing high-quality
try-on images with arbitrary poses. As illustrated in Fig. 1, given
a source user image, an in-shop garment for try-on, and a target
pose only with keypoints!, the goal is to synthesize a realistic
try-on image for the user. To solve the issues of the occlusion or
dramatic posture transformation based on clothing warping, one
basic approach is to provide the body parsing information to the
clothing warping frameworks. Nevertheless, this intuitive approach
cannot solve the occlusion problems because of directly pasting the
warped clothing on the target person. Therefore, instead of adopting
clothing warping-based methods, the proposed FashionOn network
first utilizes human segmentation information to synthesize the try-
on segmentation. Afterward, a conditional GAN and a refinement
network are consecutively exploited to generate the try-on images
based on try-on segmentation and preserve the details.

Specifically, FashionOn network is comprised of three stages:
pose-guided parsing translator, segmentation region coloring, and
salient region refinement. In pose-guided parsing translator, in-
spired by [34], we first construct a deep neural network to trans-
form the posture into the semantic segmentation form based on the
source human parsing and the target pose keypoints for specifying
the information of limbs such as location and size to guide the
learning of the next stage. Afterward, in segmentation region col-
oring, we adopt cGAN to render the appearance information of the
human and clothing to fill with the semantic segmentation result
from the previous stage to generate a realistic human image. Finally,
in the last stage, salient region refinement focuses on ameliorating
two regions, i.e., face and clothing, with detailed information for
achieving more realistic virtual try-on results.

To demonstrate the efficacy of the proposed model, we measure
the performance of FashionOn in terms of Inception Score (IS) and
Structural Similarity (SSIM) on the datasets collected by ourselves
and DeepFashion [26], which are both composed of various types of
clothes with a diversity of poses. Moreover, we conduct a user study
to compare FashionOn with the state-of-the-art [42] by the A/B test.
The experiments show that the proposed FashionOn outperforms
the state-of-the-art method both quantitatively and qualitatively.
The contributions are summarized as follows.

e We propose a novel semantic-guided image-based virtual
try-on, namely, FashionOn network, that is able to generate
high-quality try-on images in arbitrary poses and solve the
body occlusion and dramatic posture transformation. To the
best of our knowledge, FashionOn is the first virtual try-
on network to precisely address wearing details (pleats and
shadows) and accurate facial characteristics.

e We collected a new dataset containing 11283 pairs of the
same person in different poses and the corresponding in-
shop clothes images.? Experimental results manifest that

I The target postures are specified by keypoints, which can be 1) obtained by classic
posture images in the databases with keypoints prediction model [4] or 2) manually
adjusted by users.

2Please find the examples in https://github.com/fashion-on/FashionOn.github.io.
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FashionOn network outperforms the state-of-the-art method
and solves the body occlusion problem. Moreover, the user
study shows that 78.22% of users are more willing to use try-
on services with multiple view angles and in different poses
than that with only one result, which can be a value-added
service to fashion e-commerce websites.

2 RELATED WORK
2.1 Virtual try-on

Virtual try-on networks can be categorized into two kinds of ap-
proaches: 1) clothing warping-based and 2) 3D-model-based ap-
proaches. In the following, we briefly introduce these two kinds of
approaches and compare FashionOn with them.

2.1.1 Clothing warping-based try-on. Thin Plate Spline (TPS) [2]
is a spline-based technique that prevails in the non-rigid transfor-
mation of images without going through any generator [22, 46].
Therefore, warping clothes directly by TPS is widely-used in many
try-on research [15, 42] since it warps clothes and preserves pat-
terns, texture, and logos. For instance, Han et al. [15] presented a
coarse-to-fine image-based virtual try-on network called VITON to
warp in-shop clothes through TPS and an additional refinement net-
work for synthesizing the warped clothing details with the coarse
person. Although [15] successfully implemented virtual try-on and
preserved most patterns and logos, some details are still missed
since the warped clothes still require to be processed by the re-
finement generator. Therefore, Wang et al. [42] further improved
[15] via constructing a novel network CP-VTON which combined
the warped clothes with the generated person through a generated
composition mask instead of using the refinement generator. Never-
theless, clothing warping-based methods relying on TPS warp the
clothes smoothly but fail to change the detailed surface appearance
(e.g., pleats and shadows) on the clothing to follow the human poses.
In contrast, FashionOn is constructed as a semantic segmentation-
based method that avoids the issue. As such, FashionOn not only
preserves complete details of the in-shop clothing (patterns, logos,
and texture) but also generates realistic appearance (pleats and
shadows) according to body shapes and human poses.

2.1.2 3D model-based try-on. Although many studies based on 2D
images work on the virtual try-on task, numerous research aimed
to utilize 3D body shape and 4D sequence to make the results more
realistic [14, 24, 31, 43]. For example, Pons-Moll et al. [31] used a
high-resolution video to capture the garment geometry in motion
on a body for getting a rough and low-resolution meshes body
model and aligned cloth templates to the garments of the input
scans again to generate more realistic and body-fitting clothes.
Gundogdu et al. utilized a Point-Net [41] like architecture to extract
the information about the person and encoded body features with
the garment mesh to compute the point-wise, patch-wise, and global
features to predict the fitted garment. To enhance the realism of
the garment on the person, Lihner et al. [24] introduced a novel
framework composed of two complementary modules: a learnable
statistical model based on the non-rigidly aligned clothing templates
and cGAN generating the high-resolution garment map. While the
above 3D-model-based methods are capable of producing try-on
videos, it requires plenty of manual labors or expensive equipment
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to collect the 3D annotated data for constructing 3D models. In
contrast, FashionOn network only requires two images to generate
try-on images with arbitrary poses.

2.2 Pose transformation

Adding the pose transformation to the virtual try-on network helps
consumers have more information for the clothing in multi-aspect.
A variety of researches [1, 5, 7, 8, 18, 27, 28, 32, 37, 38, 47, 48] had
been proposed to transform the poses in an image. Generally, hu-
man pose transformation operates in two stages, pose estimation
and image generation. The first stage can be categorized into two
classes, including human keypoints estimation [4, 13, 44] and hu-
man parsing segmentation [11, 21, 25]. In the second stage, most of
the works [8, 32, 37] adopted the variant architecture of GAN [12]
to generate realistic images. Moreover, in [5, 27, 48], they applied
a coarse-to-fine framework with the refinement network to im-
prove the final results effectively. However, previous works of pose
transformation do not apply to virtual try-on, while FashionOn
seamlessly integrates both pose transformation and virtual try-on.

3 FASHIONON NETWORK

To achieve the goal of virtual try-on with arbitrary poses, we pro-
pose a novel network as shown in Fig. 2, which is comprised of three
stages: (I) pose-guided parsing translator, (II) segmentation region
coloring, and (IIl) salient region refinement. Stage I is designed to
fully exploit the human body parsing information of the source user
image to try on the in-shop clothing mask and transform into the
target posture. Then, after deriving the transformed segmentation
image, we design a coloring generator in stage II to render human
appearance on the transformed segmentation image from stage I.
Additionally, we utilize refinement networks in stage III to generate
more details and correct errors from the results of stage II.

3.1 Pose-guided parsing translator

The information of human body segmentation is useful to generate
a realistic human image because the information explicitly shows
the corresponding area of each body part and is also able to guide
the learning to generate a clear texture and details of each body
part. Therefore, a pose-guided parsing translator is introduced to
translate the parsing masks of the source image M; to the target
parsing masks M; according to the target pose p;. We use the
pre-trained CIHP [10] to generate the human parsing labels for
representing body parts, which contains neck parsing distinguish
from other virtual try-on network [15, 42], most of which use the
common parsing method [11]. The synthesized human parsing
labels contain 20 classes, which include clothing items and body
parts, e.g., upper clothes, face, right-arm. To capture the shape and
learn the mapping of each class item, we use one-hot encoding
for the human parsing label to 20 channels tensor M € RZOXWXH,
where each channel is a binary mask representing one class item
such as face or hair. To eliminate the redundant information of the
source user image, we replace the corresponding parsing channel
of clothing with the mask of original in-shop clothing M., which
can simultaneously offer the information of in-shop clothing shape.

The architecture of the pose-guided parsing translator is adapted
from pix2pix [19], of which the generator contains 2 downsampling
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layers, 9 residual blocks, and 2 upsampling layers. Each residual
block is composed of convolution layers and skip connection com-
bining the input and the output of the corresponding block. The
objective of our pose-guided parsing translator G; adopt conditional
GAN as following:

L:6an(Gt, D) =Em, p,, Mc, M, [10gD((Ms, pr, Mc), My)]+

Ep,, p,, M. [log(1 = D((Ms, pr, Mc), Gt(Ms, pr, Mc)))],

where G; tries to minimize the objective against D; that tries to
maximize it, i.e. arg ming, maxp, LcGanN(Ge, Dy).

To precisely classify each pixel as the corresponding body part
or the clothing item, we combine a pixel-wise binary-cross entropy
loss of the G;, denoted as £8 with our cGAN objective and the

R BCE’
discriminator stay the same:

L50,Gr) == My 10g(Gr(Ms, pr, Me)+(1-M¢) log(1-Gy (Ms. pr. Me)),

ne

where n. represents the total number of channels of human parsing
mask. The final objective is

. G
arg rl(l;ln nz)ax L:6an(Ge, Dy) + Abce-EBéE(Gt)
t t

3.2 Segmentation region coloring

After deriving the target segmentation, in the second stage, the
goal is to synthesize the rough results on the segmentation regions,
denoted as T = G¢(Ms, ps, Mc). Therefore, we adopt the architec-
ture of conditional GAN (cGAN) [30] for synthesizing the results
with a pair of generator and discriminator. For the generator, we
propose a coloring generator G, to fill the human detailed infor-
mation into the parsing regions according to the appearance of the
source person image Is and the texture of the in-shop clothing C;.
Due to the limited dataset, our model learns to change the same
garment for the source person the training procedure. Therefore,
we remove the garment information of I to avoid providing G
any clothing information of source person.

Specifically, the in-shop clothing C; in R**W*H the source per-
son image without clothing information after masking clothing
I, € R”WXH and the target segmentation T € REW*WXH are of-
fered as the input of G.. As illustrated in Fig. 2, we adopt the archi-
tecture of convolutional auto-encoder and utilize skip connections
between encoder and decoder to help transmit input information
to output directly. For the encoder of G, we design six residual
blocks. Each of them is stacked with two convolution layers and
ReLU to integrate T, I; and C; from small local regions to broader
ones so that appearance information of I; and C; is able to be ex-
tracted. Additionally, local skip connections are employed to avoid
vanishing gradient [3, 9] and improve our network performance.
The decoder is similar and symmetric to the encoder for generating
the result image I; of G, which fills appearance information into
corresponding body parts of T.

For forcing G to concentrate on generating correct human part
instead of the whole image, we filter out background information
of the generation result Ij = G¢(Cy, I, T) with 1 — Tpg and so do as
the ground truth I; with 1 - Tj, g, where Tj4 and My,,, respectively
represent the background channel of T and M;. After that, we
compare them with L1 distance loss function to capture the global



Session 1C: Fashion & Human Analysis

MM ’19, October 21-25, 2019, Nice, France

[
)

Iy

A
(i

1

s

GANLoss

e
Ly Loss

Clothing UNet

ﬁif‘:a

o

1Bg canvos

i

A
|

'
Itdommg

t ¢

L, Loss + Vgg Loss

! | "+ Igdrace  Ispoce
Letoming : ' |
s foss : y | e — ] :
E— A r
(TNl S Al &
E_ | ’ : :
|
I

Ce

Figure 2: Training overview, which consists of three stages. Stage I (Pose-guided parsing translator) transforms the source
human pose and generates the target parsing image in target pose T according to M, M., and P; by a DCGAN [33]. Stage II
(Segmentation region coloring) renders the information of clothing and human by cGAN [30] to generate a realistic source
person image I; with the target posture. Stage III (Salient region refinement) elaborately extracts two critical regions, face, and
clothes, to additionally generate more detailed information separately by Facial GAN and Clothing UNet.

structural information and other low-frequency information:
Lu=37
W H

To complete GAN architecture, we construct the coloring dis-
criminator D, to differentiate two pairs: one including I; and I, and
the other including I, and I;. With inserting additional real image
Is, D impels G to generate more realistic image. Furthermore, the
GAN loss is calculated based on the binary cross-entropy loss since
it is a binary classification problem, i.e., true or fake images.

Ge(Cr I T) ® (1= Tyy) = I; ® (1 — My, )

Ge !
'CGAN = LBCE(DC(GC(CIUIS’T)’IS)’ 1) + ALlLl

L2 = LBcED(Ge(Cr. 1. T). ). 0)
+ Lcg(De(t, Is), 1)

The goal of G, is to deceive D, discerning its result as real image,

thus, the target of Lpcg in LngN equals to 1. In contrast, the

targets of Lpcg in ngN equal to 0 and 1 separately, since D, is

built for distinguishing generated and real images correctly.

3.3 Salient region refinement

The quality of virtual try-on highly depends on the characteristics
(face details or body shape) of users, the clothing information (stripe,
logo, bow tie), and 3D physics (pleat, shadow). Therefore, in the
third stage, two refinement generators are exploited on the facial
and clothing region separately to synthesize the realistic details.

278

3.3.1 Facial GAN. Human face and hair are complicated but play
an important role in synthesizing user try-on images. Therefore,
to generate the residual face details, we modify the architecture of
segmentation region coloring (G.) for the face refinement network
G,y by removing the fully-connected layer to preclude the loss
of input details when compressing. Let Ty, denote the human
parsing mask of head regions (including the face, neck, and hair)
from stage I. We use Ty 4, to extract facial region from I5 and Is for
forcing G, ¢ to focus on facial details. As such, G, r generates the
details as a residual output r = G,r(I5 ® Trace, Is ® Trace)- After
processing images through G, ¢, we derive the fine-tuned results
by adding r to I4.

Moreover, inspired by [20, 35], we employ the VGG perceptual
loss to sharpen the fine-tuned images. When calculating the VGG
perceptual distance, only the regions within T¢ 4, of (r + I5) and
It 'face’ r
spectively. Both (r + Ig)}ace and I;face are mapped into the feature

I; are considered, which are denoted as (r + Ig)}ace and e-

space through the differentiable function ¢ instead of calculating
the distance in the image space directly. This additional loss encour-
ages (r + Iy) Face and Itface to have similar feature representation

which allows the model reconstructing the details and edges better.
Specifically, the VGG perceptual loss is defined as:

G, ’ ’
ngg((r + Ig)face’ Itface)

s

= S A+ ) i)
i=1

1
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where ¢; represents the feature map obtained from the i’ h layer in
VGG19 model [39]. We further add L1 loss to reduce the artifacts
from VGG perceptual loss and integrate GAN loss with binary
cross-entropy as follows:

Grf _ Grf ’ ’
Loan = Logg(r +19)paees e,
IDIP (EATE
W H
+ A1 LBCEDrp(Is ® Traces (r + Ig) 4 1)

+/1f2;;

D, ’
Loy = LBED s @ Trace: 7+ Ig) ) 0)

+ LBCE(Drf(IS ® Trgces Ifface)’ 1).

3.3.2 Clothing UNet. Most state-of-the-art virtual try-on networks
[15, 42, 45] preserved clothes detailed information by directly fusing
the pre-warped clothes and users. However, this kind of approach
faced the problem of veiling the limbs in front of the clothing. There-
fore, to solve this problem, we re-design the try-on network by first
transforming the human pose into the semantic segmentation form
via pose-guided parsing translator and then coloring the clothing
textures, instead of using clothing-warping. Nevertheless, after the
second stage, FashionOn fills most clothing information (color and
shape) back but there still exists obvious missing information (e.g.,
texture, logo, pleat, shadow). Therefore, we design a clothing re-
finement generator G,., named Clothing UNet, to extract clothing
features directly from the in-shop clothing C; and fill into the cloth-
ing part of I;. The encoder of G, contains five downsampling
convolutional layers and each layer is followed by one instance
normalization layer [40] and one Leaky ReLU [29]. The decoder of
Gy is symmetric to the encoder.

We concatenate Ié]c tothing = 19 ® Tc (the clothing part of I) and
in-shop clothing C; as the input to generate a refined clothing C, =
G’C(I;iclothing’cf)’ where T, € RIXWxH represents the clothing
channel of T. To minimize the discrepancy between the refined
clothing C, and the target clothing region I;C[Dthmg =1 ® My,
where M;_ represents the clothing channel of M;, we introduce the
L1 loss (LLclrc) and the VGG perceptual loss (LS&;) to refine the
clothing as follows:

Lflrc(cr’l;clothing) = Z Z
W H

1

Ires - It ® (1 - Mtbg)

P
1

Cr -1,

clothing||q ’

¢i(cr) - ¢i(I;clothing)

s

5
'ngr;(c”]tclo:hmg) = Z}Ai | 1
i=
where ¢;(C) represents the feature map of the clothing C of the i’ h
layer in VGG19 model [39].

Notice that L1 loss is exploited instead of L2 loss since the final
stage aims to generate sharp try-on images and avoid the blurry
results. Besides, to avoid spatial misalignment, we fuse the refined
clothing C, into Iy, where the clothing region is removed, to syn-
thesize a refined human I,; = Cr ® T; + I ® (1 — T¢.). Here, we use
the parsing mask T¢ to select the clothing regions which helps to
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exclude limbs in front of the clothing when fusing the clothing. To
avoid the refined clothing C, being misaligned to I, we introduce
L1 loss function to help C; locate in the right position on the human
body. The loss for the refined clothing try-on is defined as:

£ gt = ) 3 g =l
W H

The overall loss function of clothing UNet is defined by

L = A1 LG5 + A2 LT (Cr )+ A3 LI (g Ir).

clothing

4 EXPERIMENTS

In this section, we first present the details of the datasets and im-
plementation. Afterward, qualitative and quantitative analyses are
conducted with the state-of-the-art method. Finally, the limitations
of FashionOn are discussed for future research.

4.1 Dataset

Since most of the existing datasets [15, 42] contain only one pose
for each person, we collected a new large-scale dataset comprising
10, 895 in-shop clothes and 10, 895 pairs of human images of the
same person in 2 different poses.> Moreover, we also use the Deep-
Fashion dataset [26]. There are 11, 283 in-shop clothes and 11, 283
pairs of human images of the same person in 2 different poses in
total with the resolution of 288 x 192. We further wrap one in-shop
clothing and two human images in different poses into a triplet for
training. The dataset is randomly split into the training set and the
testing set with 9,590 and 1, 693 triplets, respectively.

4.2 Implementation Details

The architecture of the pose-guided parsing translator is based on
ResNet, where the generator contains 2 downsampling layers, 9
residual blocks, and 2 upsampling layers. Each residual block is
composed of 2 convolution layers and 1 skip connection combining
the input and the output of the corresponding block. All the convo-
lution layers in the residual blocks are with stride=1, kernel=3, and
followed by ReLU.

For the segmentation region coloring, the encoder and decoder
of G, are symmetric and consists of 6 residual blocks. Each block
contains 2 convolutional layers with stride=1, 1 sub-sampling con-
volutional layer with stride=2 except the last block, and 1 fully-
connected layer. All convolutional layers contain 3x3 filters and
the number of the filters linearly increases and decreases respec-
tively for encoder and decoder.

The face refinement network (G, r) is similar to segmentation
region coloring but without the fully-connected layer. G, r uses
4 residual blocks containing 2 convolutional layers with stride=1
and 1 sub-sampling convolutional layer with stride=2 for both
encoder and decoder. Moreover, for Clothing UNet, G, uses 5
convolutional layers for both encoder and decoder to construct a
UNet with stride=2. All convolutional layers contain 4 x 4 filters and
the number of kernels linearly increases and decreases respectively
for encoder and decoder. Also, it contains an Instance Normalization
layer[40] and Leaky ReLU[29] following each convolutional layer.

3Please refer to the images in https://github.com/fashion-on/FashionOn.github.io.
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Figure 3: Qualitative results sampled from our results through manipulating both numerous clothes and various poses. The
input source person images are shown in the first row; further, the joint points of target pose and in-shop clothes are shown

in the first and second columns respectively. The results generated based on the aforementioned clothes and poses are shown
in the other columns.
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Figure 4: Visual Comparison: The most left three columns are inputs, and we show the comparison of the same conditions
within different models. FashionOn network prevails the state-of-the-art work shown in the fourth column a lot.

We use Adam [23] as the optimizer with f; = 0.5 and f2 = 0.999
for all stages. The learning rates of pose-guided parsing translator
and other stages are 2e-4 and 2e-5, respectively.

Runtime. We randomly select 2000 image sets and report the
average running time for each module with NVIDIA 1080-Ti GPU
as: pose-guided parsing translator (2.6ms), segmentation region
coloring (3.1ms), and salient region refinement (1.9ms).

4.3 Qualitative results

Since none of the previous researches can synthesize image-based
virtual try-on with arbitrary poses, we build the baseline by first
applying the state-of-the-art pose transformation (PoseGuided [27])
to transform the source user pose, and then use the state-of-the-art
clothing warping (CP-VTON [42]) to warp the in-shop clothing
and paste on the warped source user image. Fig. 4 shows the vi-
sual comparison of different approaches and Fig. 3 displays our
sample results. The results manifest that both methods accomplish
the task of virtual try-on with arbitrary poses, but the results of
PoseGuided+CP-VTON contain some artifacts or lack of details,
especially for the following cases.

Human limbs occlusion Row 4 in Fig. 4 shows that the proposed
FashionOn successfully resolves the human limbs occlusion prob-
lems of CP-VTON since we preserve the clothing details by simul-
taneously warping the clothing mask and body parsing masks, and
then rendering human appearance sequentially, instead of simply
warping it through TPS [2] and synthesizing directly. Since G,
renders the appearance based on all masks at the same time, our
model FashionOn resolves the problems of limb occlusion.
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Duplicating erroneous pleats and shadows Another failure case
of virtual try-on via TPS warping is the erroneous pleats and shad-
ows as shown in row 2 in Fig. 4. The pleats and shadows on the
clothing by PoseGuided+CP-VTON are exactly the same as in-shop
clothing with only slight distortion. Nevertheless, these details sel-
dom remain the same as in-shop clothes when people try on them.
In contrast, FashionOn generates the pleats and shadows based on
the body shape and the posture of the source person which achieves
far more realistic and reasonable results.

Limitation of dramatic posture transformation PoseGuided [27]
often presents mutilated limbs when transferring the posture dra-
matically. Compared to [27] that warps the person image based on
human joints, FashionOn uses human parsing segmentation and
divides the pose transform generation task into two sub-tasks to
simplify warping tasks for both posture and clothing. In the Fig. 4,
the case in row 4 shows that FashionOn surmounts the mutilation
problem even in extreme posture transformation.

In addition, as shown in Fig. 4, FashionOn generates realistic
results for a variety of clothes, races and body shapes. The demon-
stration proves that our model makes a great achievement in vir-
tual try-on with arbitrary postures and preserves the details (Row
1 and 3) well. Further, FashionOn is much more effective than
PoseGuided+CP-VTON since it is inevitable to lose some details
when producing images through a two-phase conditional generator.

Failure case As Fig. 5 demonstrates, our FashionOn network
fails to synthesize symmetric eyes in the case of transforming the
sideways photo into front one since the face of the sideways photo
often contains either a hidden eye or asymmetric size of eyes, which
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Figure 5: Failure cases of our FashionOn network.

may require a more sophisticated model to deal with facial geometry.
Besides, there is another failure case shown in Fig. 5. The fingers
of generated person images are blurry because current human
parsing regards the fingers as a region, regardless of each finger.
Therefore, it is envisaged to develop a fine-grained human parsing
for generating better results.

4.4 Quantitative results

We evaluated the quantitative performance of our FashionOn net-
work with the other virtual try-on system, CP-VTON [42], in terms
of two widely-used metrics, i.e., SSIM and IS. Moreover, a user study
is conducted with 206 users to evaluate visual quality.

Evaluation Metrics Inception Score (IS) [36] is usually used to
quantitatively evaluate the synthesis quality of images [15, 27, 42].
The IS score will be higher if the models can produce visually
diverse and semantically meaningful images. On the other hand,
Structural Similarity (SSIM) is utilized to measure the similarity
between the reference image and the generated image ranging from
zero (dissimilar) to one (similar).

Quantitative comparisons of the above metrics are summarized
in Table 1. The results manifest that FashionOn outperforms CP-
VTON in terms of both IS and SSIM by 9.1% and 12.7% respectively.
Note that although FashionOn (G,) without salient region refine-
ment achieves the best SSIM score, it obtains the worst IS score
among all our FashionOn networks since the results are blurry as
illustrated in Fig. 4. On the other hand, we can also observe that
FashionOn (Gr +G, ), FashionOn (Gr + Gr), and FashionOn (Ours)
achieve higher IS score than FashionOn (G,), which means that
our salient region refinement network successfully generates the
details to improve the visual quality of synthesis images.

User Study There are 206 volunteers participating in our user
study. All the 1, 693 humans and clothes in the test dataset are ran-
domly composed into 15 problem sets. We compare our results with
the results generated by CP-VTON [42] using the same conditioned
humans and clothes. We use an A/B test for the evaluation, i.e., ask-
ing users to vote for the better try-on result. The result of the user
study is summarized in Table 2. We get 2, 417 votes and CP-VTON
gets 673 votes, which shows the superiority of the proposed Fash-
ionOn. Moreover, after filtering 50% of the data in the middle and
choosing the best results from both methods, the survey also shows
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Table 1: Comparison on the test part of our virtual try-on
data.

Method | IS SSIM
CP-VTON [42] 2.9243 £ 0.0057 0.7930
FashionOn (G;) 3.0397 £ 0.0593  0.8992
FashionOn (G, + Grf) 3.0460 £ 0.0550 0.8974
FashionOn (G + Gyr¢) | 3.1655 + 0.0894  0.8954
FashionOn (Ours) 3.1914 + 0.0935 0.8935
Real Data 3.3354 + 0.0631 1

Table 2: The user study results that FashionOn prevails CP-
VTON [42].

Method CP-VTON[42] | FashionOn (Ours)
Mean 21.78% 78.22%
Max (25%~75%) 26.7% 86.7%

FashionOn is state-of-the-art. Besides, we make a questionnaire to
survey the user’s preference for virtual try-on. The questions and
the corresponding results are reported as follows.

Q1. How many poses should virtual try-on present? The aver-
age of answers is 5.6 and the median is 5, which means users want
the virtual try-on systems could give them multi-aspect photos to
buy clothes. Besides, this also proves our virtual try-on work with
arbitrary poses has a larger potential than the traditional virtual
try-on systems.

Q2. What is the most important consideration when using
virtual try-on work? The most important consideration is the
authenticity of the virtual try-on results and the second is multi-
aspect photos. This shows FashionOn network totally hit the spot.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we present a unique virtual try-on FashionOn network
based on part-level learning to precisely generate try-on human
images with arbitrary poses. FashionOn is devoted to preserving
the critical human information, e.g., face, hairstyle, body shape,
and clothing characteristic (pleat, shadow, and logo) to make vir-
tual try-on results the most lifelike. Besides, compared with recent
virtual try-on networks, FashionOn surpasses the recent methods
on diverse clothing types and also supply multi-perspective try-on
results via presenting on various poses for users to make the right
choice for the most satisfying clothing. In the future, we plan to
study the complicated multi-layer outfits problem by providing
additional information such as categories of clothes.
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